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Abstract. We consider self-avoiding walks on the honeycomb lattice interacting with a surface
with different energies associated between sites in contact with a linear boundary to the left of
the origin and those in contact with the right of the boundary. We numerically confirm recent
exact results for the polymer adsorption transition and corresponding critical exponents with
mixed ordinary and special boundary conditions. The phase diagram is elucidated with the aid
of some rigorous arguments.

1. Introduction

Long, flexible polymers in a good solvent have been studied extensively over many years in
the context of critical phenomena, with a wide range of exact results found, particularly in
two dimensions. A natural extension of this theory is to consider the effects of introducing
an impenetrable wall into the solvent with one or both ends of the polymer being attached,
and the rest restricted to an area above or below this surface. This wall can be thought of
as an interface between a solid and a liquid.

The canonical model of polymers in a solvent is that of self-avoiding walks (SAW) on
some lattice. The wall can be introduced by restricting the SAW to the upper half of a
d-dimensional lattice and the interaction with the surface by an energy,−ε, associated with
contacts between the polymer and the surface. The Boltzmann weight for a configuration
of the polymer is given byκm = emε/kBT , whereT is the temperature of the solvent andm

is the number of contacts with the surface. At some critical temperature,Ta, the polymer
becomes adsorbed onto the surface [1]. In a seminal paper in this field, Hammersleyet al [1]
proved that there must be a phase transition in this model (on the hypercubic lattice). Given
there is a single transition, it can be further shown [2] that at this adsorption transition thed-
dimensional behaviour of the polymer becomes(d −1)-dimensional. For high temperatures,
(T > Ta), the polymer is in a desorbed phase where it extends a large distance into the
solvent above the surface to which it is attached. For low temperatures,(T < Ta), the
polymer is in an adsorbed phase.

The adsorption of polymers has generated much interest, with many exact results found
in two dimensions through conformal field theory [3–6] and using conformal invariance
predictions in conjunction with the Bethe ansatz solution of associated lattice models [7–9].
In addition to this, much numerical work to find critical exponents has been completed in
two dimensions using Monte Carlo [10, 11], exact enumeration [12–20], renormalization
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group [21], transfer matrix [22, 23] and series expansions techniques [24] with varying
degrees of success. Most of this work has been done on the square and triangular lattices.

It is well known [25] that there is a correspondence between SAW and theO(n) model
in the limit n → 0. Burkhardt and Eisenriegler [6] considered theO(n) model with three
different boundary conditions: free boundary spins, where the bulk and surface couplings are
the same; fixed boundary spins; and critically enhanced surface coupling. In the terminology
of surface critical phenomena these three boundary conditions correspond to the ‘ordinary’,
‘extraordinary’ and ‘special’ transitions. The critical adsorption temperature,Ta, for SAW
corresponds to the ‘special’ transition, and will be referred to as such throughout this paper.
The ‘ordinary’ transition corresponds to SAW in the presence of an effectively repulsive
surface.

Importantly, in a recent paper, Batchelor and Yung [8] derived the critical temperature
and configurational exponent from the Bethe ansatz solution of theO(n) loop model with
mixed boundary conditions on the honeycomb lattice. Here, ‘ordinary’ (O) boundary
conditions apply to one side of the walk’s origin, and ‘special’ (S) boundary conditions
apply to the other. Burkhardt and Eisenriegler [6] have also considered such mixed boundary
conditions, calculating the universal Casimir contribution to the free energy via conformal
invariance methods. Batchelor and Yung [8] also derived this quantity, along with the
geometric scaling dimensions which describe the universal surface critical behaviour.

Figure 1. A self-avoiding walk on the honeycomb lattice attached to a one-dimensional boundary
with contacts identified with the boundary to the left (open circles) and to the right (closed circles)
of the origin (a cross). A fugacityκl is associated with open circle contacts while a fugacityκr

is associated with closed circle contacts.

In this paper we consider SAW on the honeycomb lattice with fugacitiesκl and κr

associated with contacts between the walk and either side of the surface as shown in figure 1.
We have considered cases where both sides of the surface are ‘special’, both sides are
‘ordinary’, and the mixed case as explained above. In the cases of both sides of the surface
being ‘special’, and both sides ‘ordinary’, we have been able to check exponent values that
have been calculated previously on other lattices, and conjectured exactly on the honeycomb
lattice where the connective constant and adsorption transitions are known exactly. We have
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found† that in the case of both sides being ‘ordinary’,γ
(o)

1 = 0.953 12±0.000 52, compared
to the conjectured exact result [3] of 61/64 = 0.953 125. This numerical estimate is, in
general, more accurate than those found in previous studies [14, 18, 17, 13, 15, 10] on the
triangular and square lattices. For both sides being ‘special’,γ

(s)
1 = 1.450± 0.004, where

here the conjectured exact result [7] is 93/64 = 1.453 125. Again, this numerical estimate
is more accurate than those found in previous studies [16, 11, 10, 22] on the triangular and
square lattices. The crossover exponent is also found to beφs = 0.520 ± 0.013, just
outside the predicted [5]φs = 1

2. This estimate, however is no better or worse than all
[11, 10, 21, 20] but a transfer matrix study [23] on the square lattice. We find also that
φ(m)

s = 0.514± 0.014, giving a numerical indication thatφ(m)
s = 1

2.
Importantly, we have been able to verify Batchelor and Yung’s [8] new exponent

conjectureγ
(m)

1 = 85/64 = 1.328 125, obtaining the value ofγ (m)

1 = 1.3279± 0.0003
for the mixed case as explained above. This has not been estimated previously.

Finally, we have been able to map out the complete phase diagram in theκl–κr plane.
This has been accomplished by first modifying existing arguments [1] to prove the existence
of the free energy. Bounds on its behaviour then enable us to delineate the phase boundaries
and the order of the transitions across these boundaries. This is summarized in figure 2.
One interesting feature is the first-order transition along the lineκl = κr for κr > κa.

κl

κr

κa

κa

κ lrκ =

1

1

(D)

(AL)

(AR)

P

BL

BR

Figure 2. A schematic illustration of a conjectured phase diagram in the(κl , κr ) plane showing
the three phases: desorbed (D); adsorbed to the left side of the boundary (AL); and adsorbed
to the right-hand side of the boundary (AR). This diagram also shows the phase boundaries BR
and BL, and their point of intersection P. The transition (BR, BL, or P) from the desorbed phase
into one of the others is critical while the transition from one adsorbed phase to the other should
be first order.

This paper is set out as follows: the partition function and other quantities of interest are
defined in section 2. We give a brief report on the generation of the walks and a discussion

† Note: for clarity we distinguish the configurational exponent for ‘ordinary’, ‘special’ and ‘mixed’ boundary
conditions by the superscripts (o), (s) and (m), respectively.
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of the techniques of analysis in section 3. Section 4 contains our best estimates of the
various exponents. In section 5 we discuss the phase diagram and some brief conclusions
follow in the final section.

2. The model

The partition function for walks of lengthn with one end attached to a surface, with different
energies for sites interacting with either side of a surface is given by

Z1
n(κl, κr) =

∑
ml,mr

cn(ml, mr)κ
ml

l κmr

r (1)

where the sum is over all allowed values of the number of contactsml with the left-
hand side of the surface, and the number of contactsmr with the right. The coefficients
cn(ml, mr) are the number of configurations of lengthn with ml andmr left- and right-hand
interactions respectively. As described by figure 1,κl andκr are the respective fugacities
of contacts to the left- and right-hand side of the surface. That is,κl andκr are given by
κl = eεl/kBT andκr = eεr /kBT where−εl and−εr are the energies of a single contact with
the left and right-hand side of the surface, respectively. While the average energy, given by
〈E〉 = −〈εlml + εrmr〉, and the specific heat per step, given byCn(κl, κr) = 〈E2〉−〈E〉2

n
, are

canonical quantities to consider we have also found it advantageous to calculate the average
number of contacts with each side〈ml〉 and〈mr〉 and their fluctuations,

F l
n(κl, κr) = 〈m2

l 〉 − 〈ml〉2

n
(2)

and

F r
n (κl, κr) = 〈m2

r 〉 − 〈mr〉2

n
(3)

separately.
The reduced free energy per step in the thermodynamic limit is

f (κl, κr) = lim
n→∞

1

n
ln Z1

n(κl, κr). (4)

Let us takeκl = κr for the moment. Then, it is known [1] (at least for the square lattice)
that this limit

f (κr , κr) = lim
n→∞

1

n
ln Z1

n(κr , κr) (5)

exists. Moreover, for 06 κl = κr 6 1

f (κr , κr) = lim
n→∞

1

n
ln Z1

n(κr , κr) = lim
n→∞

1

n
ln Zn = ln µsaw (6)

whereZn is the partition function for walks in the bulk. It has also been proved that

f (κr , κr) > ln µsaw (7)

for sufficiently largeκr . Hence there must be a least one non-analyticity in the function
f (κr , κr). Assuming that there is a single adsorption transition this then implies that there
exists a valueκa > 1 such that the result (6) holds for 06 κl = κr 6 κa.

In general, it is appropriate to assume that

Z1
n ∼ A µnnγ1−1 asn → ∞ (8)
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and

Zn ∼ Bµn
sawn

γ−1 asn → ∞ (9)

whereA and B are constants,µsaw is the bulk connective constant, whileµ = ef (κl ,κr ),
andγ1 andγ are the universal configurational exponents for walks with one end attached
to the surface and walks in the bulk, respectively. In general,f andA vary continuously
with temperature while the exponentγ1 only changes if there is a change of phase. (Of
course, if one only considers surface interactions the bulk partition function never changes!)
However, in this problem the free energyf is also expected to be independent of temperature
in the desorbed phase, and equal to the bulk value lnµsaw as proved in theκl = κr case
mentioned above. (It is still expected to be lattice dependent.) Nienhuis [26] has found that

µsaw = 1/xc =
√

2 + √
2 for SAW on the honeycomb lattice.

Upon further consideration, to which we shall return in section 5, it can be argued that
the free energyf (κl, κr) exists for allκl > 0 andκr > 0, and has the following behaviour:

f (κl, κr) = ln µsaw for 0 6 κl, κr 6 κa (10)

while for anyκl andκr

f (κl, κr) = f (κr , κr) if κl < κr (11)

and

f (κl, κr) = f (κl, κl) if κl > κr . (12)

This leads to the conjectured phase diagram illustrated in figure 2. We shall show in
section 5 that this can indeed be proved (at least on the square lattice) with the help of
results from Hammersleyet al [1].

As mentioned in the introduction, we are particularly interested in the following three
cases:

(i) (O–O): the entire surface is effectively repulsive. The valueγ
(o)

1 = 61/64 has been
conjectured using conformal field theory [3] and series results [17], and was later confirmed
by Duplantier and Saleur [4].

(ii) (S–S): the entire surface is critically adsorbing. Batchelor and Yung [7] found that
γ

(s)
1 = 93/64 by means of the Bethe ansatz. Guim and Burkhardt [22] conjectured this

some years earlier, on the basis of conformal invariance arguments which follow from the
work of Duplantier and Saleur [4].

(iii) (O–S): the surface is mixed, with one half repulsive and the other adsorbing.
Batchelor and Yung [8] recently found thatγ

(m)

1 = 85/64, again by means of the Bethe
ansatz.
It is this third situation which is new and we have examined with a view to testing the
predictions of Batchelor and Yung [8].

Batchelor and Yung [7] found that the critical temperature for adsorbing polymers on
the honeycomb lattice is given byκl = κr = 1 + √

2 ≡ κa in the symmetric interaction
case. They then showed [8] that if one considers the lineκl = 1 the adsorption point is
κl = 1, κr = κa. Hence, this is a mixed boundary point (O–S) as described above. Note
that this is consistent with the free energy behaviour also described above. These exact
interaction values allow one to test exponent conjectures for all three boundary conditions
described above, that is (O–O), (S–S) and (O–S).

It is also expected that at the special point the average number of contacts scales as

〈m〉 ∼ nφs (13)
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whereφs is known as the crossover exponent and

〈m〉 =
∑

ml,mr
mcn(ml, mr)κ

ml

l κmr
r∑

ml,mr
cn(ml, mr)κ

ml

l κ
mr
r

(14)

where m = ml + mr . Burkhardt et al [5] found using conformal invariance arguments
that φs = 1

2. One can consider an analogous exponent for the (O–S) case: this crossover
exponentφ(m)

s is then defined by

〈mr〉 ∼ nφ
(m)
s (15)

at κl = 1, κr = κa. Now, the behaviour mentioned above in equations (11) and (12), and
discussed in section 5, can be used to argue, with some mild assumptions, thatφ(m)

s = φs .
This can also be inferred from the calculation of Guim and Burkhardt [23] utilizing the
associated conformal field theory [27, 28, 6].

3. Exact enumerations

3.1. Calculation of series

We have used a simple backtracking algorithm [29] to directly enumerate all self-avoiding
walks on the two-dimensional honeycomb lattice whose origin is attached to a one-
dimensional impenetrable boundary. The number of contacts with the boundary on either
side of the origin were counted separately.

The CPU time required for this algorithm to count all walks of lengthn grows
exponentially withn. However, the total CPU time was reduced through the use of a
multiprocessor Intel Paragon. By exploiting symmetry, we find that there are 80 independent
configurations of length 8. These can therefore be programmed into 80 nodes (processors)
of the Paragon. Using the backtracking algorithm, each of these nodes can then enumerate
all walks of lengths 9–48 from the initial configuration independently, with the final totals
obtained by a global sum over processors on completion. This resulted in a speed up of
approximately 64.5, i.e. a parallelization of about 82%.

Our algorithm counted the number of walkscn(ml, mr) with ml andmr contacts with
the left- and right-hand sides of the surface, respectively. The three partition function series
which we have analysed for the (O–O), (S–S) and (O–S) cases are given in table 1, while
the full series for the coefficients may be obtained via e-mail on request.

3.2. Analysis

We utilized second-order differential approximants [30] of the generating functionG(x) =∑
n Z1

nx
n using the seriesZ1

n(κl, κr) in order to determine the critical pointxc(κl, κr) =
1/µ(κl, κr) and corresponding exponent,γ1(κl, κr) for various values ofκl and κr which
correspond to the following three cases: (O–O), (S–S) and (O–S). The generating function
H(x) = ∑

n〈m〉xn of the series〈m〉(κl, κr) was also used to estimate the crossover exponent
φs . Briefly, the available series coefficients of the partition function are fitted sequentially to
linear, quadratic and higher-order recurrence relations of a specific form [30] which can then
be solved, giving linear homogeneous differential equations with polynomial coefficients.
The solution of these equations allows us to make an estimate of the critical point and its
corresponding exponent.

Any approximant in which there is a singularity on the positive real axis closer to the
origin, or is beyond but close to the physical singularity is considered defective and is
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Table 1. The enumerations of SAW on the honeycomb lattice in the presence of a one-
dimensional boundary are summed to give the series for the partition functions used to explore
the (O–O), (S–S) and (O–S) boundary conditions for lengthsn = 1 to 48.

1 3 .5828427314758301e+01 .3414213657379150e+01
2 4 .6828427314758301e+01 .4414213657379150e+01
3 8 .2048528194427490e+02 .1224264097213745e+02
4 14 .2931370925903320e+02 .1865685462951660e+02
5 28 .8076955413818359e+02 .4638477706909180e+02
6 46 .1140832633972168e+03 .6904163169860840e+02
7 90 .2921076517105102e+03 .1670538258552551e+03
8 160 .4443330516815186e+03 .2621665258407593e+03
9 308 .1090974761130413e+04 .6038305253982544e+03

10 540 .1654905794681112e+04 .9556244697570801e+03
11 1032 .3923565991349023e+04 .2154569788932800e+04
12 1846 .6143917540497583e+04 .3476745563507080e+04
13 3502 .1420503943252600e+05 .7662725759983063e+04
14 6272 .2240920087188419e+05 .1248604912090302e+05
15 11852 .5078426451904527e+05 .2710315744638443e+05
16 21364 .8124232322888561e+05 .4462086089229584e+05
17 40234 .1811545576625838e+06 .9557572777938843e+05
18 72694 .2923807201142188e+06 .1585449418573380e+06
19 136564 .6433517213855848e+06 .3359741174321174e+06
20 247498 .1046453096934826e+07 .5610759009304047e+06
21 464070 .2276803796285042e+07 .1178318144832611e+07
22 842546 .3730422499645987e+07 .1978945443247795e+07
23 1577280 .8039413464318852e+07 .4123805802336693e+07
24 2868922 .1324500003611797e+08 .6959779401179314e+07
25 5364030 .2830719038509496e+08 .1440727740175867e+08
26 9769366 .4689567764791824e+08 .2442023612823772e+08
27 18245976 .9950326139253240e+08 .5025662946832752e+08
28 33272104 .1655725563778450e+09 .8550812893919277e+08
29 62086194 .3490552761706884e+09 .1750756319280586e+09
30 113326264 .5833163652649582e+09 .2988918007788830e+09
31 211304042 .1222728994290704e+10 .6091759172874007e+09
32 386039204 .2050821145962415e+10 .1043163353813419e+10
33 719319094 .4276787852344742e+10 .2117401685571724e+10
34 1315132086 .7197874703447445e+10 .3635881912641722e+10
35 2449100566 .1494095175569448e+11 .7352833995839876e+10
36 4480726500 .2522305217566550e+11 .1265754443011045e+11
37 8339980334 .5213585846726704e+11 .2551162901638902e+11
38 15267286682 .8826528896415058e+11 .4401781296908662e+11
39 28404168780 .1817410960044507e+12 .8844814250017940e+11
40 52024731994 .3084876797248815e+12 .1529303474997905e+12
41 96751072342 .6329399908381325e+12 .3064336893174523e+12
42 177291764826 .1076949329894609e+13 .5308667761897037e+12
43 329592919094 .2202428852746105e+13 .1060981981021724e+13
44 604222603778 .3755837034229572e+13 .1841360871232400e+13
45 1122911304344 .7657752537278444e+13 .3671353563908310e+13
46 2059361267316 .1308614099062022e+14 .6382398205724697e+13
47 3826073982642 .2660651375522593e+14 .1269730180736382e+14
48 7019302474024 .4555583011181758e+14 .2210786747309802e+14

discarded in any further analysis. In our analysis any approximant within a factor of 1.3
of the physical singularity is taken to be defective. More precisely, any approximants with
singularities in the complex plane found within a strip bounded by±0.05i and [0, 1.3xc],
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where xc is the estimate of the physical singularity’s position, are considered defective.
The non-defective approximants were then averaged, with the error given as two standard
deviations. Due to the number of approximants from some analyses produced here we have
consistently pooled the approximants obtained from using different numbers of coefficients.
This overestimates the error in some cases but should provide conservative estimates in
most cases.

In section 5 we have used the fluctuations of the number of left- and right-hand contacts
with the surface per step,F l

n(κl, κr) andF r
n (κl, κr), respectively, to search for possible phase

transitions. We initially considered simple plots ofF l
n(κl, κr) againstκl for fixed κr = d1

and various values ofd1. The positions of the maxima of these fluctuations along lines in the
(κl, κr) plane gives us an indication of the location of any phase transitions. The analogous
procedure was completed onF r

n (κl, κr) at fixed κl = d2 to gain a full two-dimensional
representation of the model’s behaviour.

4. Results

As mentioned in the introduction, many authors have estimated the critical exponents
numerically for two-dimensional SAW with ‘ordinary’ and ‘special’ boundary conditions,
with most of this work having been done on the square and triangular lattices. We will also
calculate these exponents, merely as a check of the consistency of our method of analysis,
along with calculating the exponents for ‘mixed’ boundary conditions.

4.1. The (O–O) model

From direct enumeration on the triangular lattice De’Bell and Essam [14] first estimated
γ

(o)

1 = 0.956+0.014
−0.006 using biased D-log Padé approximants, compared to the exact conjecture

of 0.953 125. Later, Lookman and De’Bell [18], using an extended series, estimated
γ

(o)

1 = 0.9549+0.0011
−0.0015 using Baker–Hunter confluent singularity analysis. On the square

lattice, using 21 and 23 terms, respectively, Guttmann and Torrie [17] and Cardy and
Redner [13] foundγ (o)

1 = 0.953(6) and 0.955(3), using Pad́e approximants and square-root
ratio analysis techniques. Later De’Bellet al [15] found γ

(o)

1 = 0.9541(1) using Neville
tables,γ (o)

1 = 0.9568(8) using D-log Pad́e analysis, andγ (o)

1 = 0.951(6) using Baker–
Hunter analysis. Meirovitch and Chang [10], using Monte Carlo techniques on the square
lattice estimated most recentlyγ (o)

1 = 0.9551(3).
By setting the interaction parameters,κl andκr in the partition function toκl = 1 and

κr = 1, we can retrieve an ‘ordinary’ surface, and hence calculateγ
(o)

1 . To save space we
do not reproduce the tables of the intermediate results. However, the final results are

xc = 0.541 197± 0.000 027 (unbiased second order) (16)

γ
(o)

1 = 0.9523± 0.0039 (unbiased second order) (17)

γ
(o)

1 = 0.9528± 0.0042 (biased second order). (18)

If we do not ‘pool’ approximants from different series lengths we obtain

γ
(o)

1 = 0.9525± 0.0026 (unbiased second order) (19)

γ
(o)

1 = 0.953 12± 0.000 52 (biased second order). (20)

In any case these results are in excellent agreement with the exact valuesγ
(o)

1 = 61/64 =
0.953 125 andxc = 1/

√
2 + √

2 = 0.541 196 1. . . .
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4.2. The (S–S) model

Numerical evidence of the proposed value forγ
(s)
1 = 93/64 = 1.453 125 has been a little

less successful so far. Nearly all estimates are consistently high. For example, using direct
enumeration with simple log–log plots, Fosteret al [16] foundγ

(s)
1 = 1.460(4). Grassberger

and Hegger [11] and Meirovitch and Chang [10] used Monte Carlo to findγ
(s)
1 = 1.46(1)

and 1.478(20), respectively. On the other hand, Guim and Burkhardt [22] used transfer
matrices to findγ (s)

1 = 1.454(4).
To retrieve the (S–S) model we set the interaction parametersκl andκr in the partition

function toκl = 1 + √
2 andκr = 1 + √

2, that is, the symmetric critical adsorption point.
Our final results are

xc = 0.541 18± 0.000 05 (unbiased second order) (21)

γ
(s)
1 = 1.448± 0.006 (unbiased second order) (22)

γ
(s)
1 = 1.450± 0.004 (biased second order). (23)

Again, these estimates are in excellent agreement with the exact value ofγ
(s)
1 = 1.453 125.

The crossover exponent,φs , has been more difficult to estimate accurately, with results
varying from Grassberger and Hegger’s [11]φs = 0.50(1) via Monte Carlo techniques to
φs = 0.562(20) as found by Meirovitch and Chang [10], again using Monte Carlo. Kremer
[21] used renormalization group methods to estimateφs = 0.55(15). Guim and Burkhardt
[23] have used transfer matrix techniques to estimateφs = 0.500(3) (this work in fact pools
data from (O–S) conditions as well), and Zhaoet al [20] found φs = 0.51(4) from direct
enumeration using partial-differential approximants. Our results are similarly high, with

φs = 0.532± 0.024 (unbiased second order) (24)

φs = 0.520± 0.013 (biased second order) (25)

and so the predictedφs = 1
2 is just outside our error range. We shall comment later on a

possible reason for the difficulty in estimatingφs .

4.3. The (O–S) model

Our main aim is to test numerically Batchelor and Yung’s [8] proposed exact result,
γ

(m)

1 = 85/64, associated with a boundary which is adsorbing on one side of the origin
of the walk and ordinary on the other. We can retrieve the (O–S) model by setting the
interaction parameters,κl and κr to κl = 1 andκr = 1 + √

2. However, we have used
κl = 0 here as this is still in the region where the left side of the surface is repulsive
(‘ordinary’), but the series are better behaved than atκl = 1.

Again, we give just the final results

xc = 0.541 18± 0.000 31 (unbiased second order) (26)

γ
(m)

1 = 1.326± 0.018 (unbiased second order) (27)

γ
(m)

1 = 1.328± 0.006 (biased second order) (28)

and again the corresponding non-pooled approximants give the more precise values

γ
(m)

1 = 1.3274± 0.0009 (unbiased second order) (29)

γ
(m)

1 = 1.3279± 0.0003 (biased second order). (30)

Both sets of values strongly support the proposed value ofγ
(m)

1 = 1.328 125.
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Guim and Burkhardt [23] have effectively found, using a transfer matrix calculation, that
the crossover exponent,φ(m)

s , has the valueφ(m)
s = 0.500(3), by pooling data from mixed and

fully adsorbing boundary condition cases. We cannot match this precision, which assumes
conformal theory. However, we were able to estimate the crossover exponent directly for
this transition as

φ(m)
s = 0.527± 0.032 (unbiased second order) (31)

φ(m)
s = 0.514± 0.014 (biased second order) (32)

which just encompasses the predictedφs = φ(m)
s = 1

2.

5. The phase diagram

In this section we discuss the phase diagram in theκl–κr plane for SAW attached to a surface
on the square lattice. We show that the free energy exists and that there is a first-order
transition along the lineκl = κr for κr > κa. The arguments presented rely on results in [1]
which were for the square lattice. However, it is possible to extend them to the honeycomb
lattice with some work [31]. Although the numerical values ofκa andµsaw are different on
the square lattice, the phase diagram should have the same generic form (see figure 2).

We begin by considering the setA+
nm of SAW of lengthn confined to the upper-half of

a lattice. The origin of the SAW is attached to the surface, and hasm contacts (vertices)
with the surface. Here the partition function is given by

ZA+
n (κ) =

∑
m

cA+
n (m)κm (33)

wherecA+
n (m) is the number of walks in the setA+

nm of lengthn with m contacts with the
surface, andκ is the fugacity of contacts with the surface. Hammersleyet al [1] showed
that the reduced free energy per step

f A+
(κ) = lim

n→∞
1

n
ln ZA+

n (κ) (34)

exists for allκ.
We next consider the setB+

nm of SAW of lengthn confined to the positive quadrant
of the lattice, with the origin attached to the left-most site of the surface, and whose final
vertex is the right-most point of the walk on the surface, with no other site of the walk
being as far or further right than this. Here the partition function is given by

ZB+
n (κ) =

∑
m

cB+
n (m)κm (35)

wherecB+
n (m) is the number of walks in the setB+

nm of lengthn with m contacts with the
surface, andκ is the fugacity of contacts with the surface. Hammersleyet al [1] showed
that the reduced free energy per step

f B+
(κ) = lim

n→∞
1

n
ln ZB+

n (κ) (36)

exists for allκ, and thatimportantly

f B+
(κ) = f A+

(κ). (37)

In our notation it is clear that

f A+
(κr) = f (κr , κr) (38)
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wheref (κr , κr) is given by equation (4) in section 2 (now defined for the square lattice),
sincecA+

n (κr) = cn(κr , κr). Now, sincecB+
n (mr) 6 cn(0, mr), andcn(ml, mr) > 0, we have

ZB+
n (κr) 6 Zn(0, κr) 6 Zn(κl, κr) 6 Zn(κr , κr) (39)

for κl 6 κr . Taking logarithms and the limits proves, using the sandwich theorem, that the
limit

f (κl, κr) = lim
n→∞

1

n
ln Zn(κl, κr) (40)

exists and is given by

f (κl, κr) = f (κr , κr) (41)

for any 0 6 κl 6 κr and for any κr > 0. Since cn(ml, mr) = cn(mr, ml) then
f (κl, κr) = f (κr , κl). This leads to

f (κl, κr) = f (κl, κl) (42)

for any 06 κr 6 κl .
Now, assuming a single transition (non-analyticity) at someκa in f (κr , κr) implies that

there are two lines of transitions: 06 κl 6 κa with κr = κa and 06 κr 6 κa with κl = κa.
Moreover, these transitions must uniformly have the same singularity in free energy (because
of the results (41) and (42)), and so the same crossover exponent (assuming scaling, that is
2 − αs = 1/φs whereαs is the exponent associated with the free energy).

Finally, we argue that the transition lineκr = κl is a first-order transition (forκr = κl >

κa). Consider a path of constantκr > κa and the partial derivative∂f (x, y)/∂x evaluated
at x = κl, y = κr along that path. Forκl < κr the partial derivative∂f (x, y)/∂x = 0
from result (41). However, forκl > κr we have∂f (x, y)/∂x = df (x, x)/dx from (42),
and so since the limit of df (x, x)/dx (as this is evaluated atx → κr ) is strictly positive
(a result that follows from the free energy properties forκl = κr [1]—that is, it must be a
non-decreasing, continuous and convex function—and the assumption of a single transition),
there must be a jump at the pointκl = κr in the derivative∂f (x, y)/∂x. This indicates
that a first-order transition is taking place there. Physically this says that the density of left
contacts per step is zero when the polymer is adsorbed on the right, but non-zero when
adsorbed on the left, and since by symmetry non-zero when adsorbed equally on both sides.
Hence, there must be a jump across the symmetry line.

Hence, we have shown that on the square lattice the full phase diagram in theκl–κr

plane is as shown in figure 2. There are three separate phases: a desorbed phase (in which
the free energy is constant), a phase in which SAW adsorbed on the right-hand side of
the surface are favoured, and a phase in which SAW adsorbed on the left-hand side of the
surface are favoured. The pointP is special, being the intersection of two critical lines
and one first-order line. It is also novel in terms of the value of its entropic exponent,
γ1. However, the (thermodynamic limit) critical behaviour displayed on crossing through
P from D to AL or AR at a fixed angle, whether or not that path lies alongBL or BR, is
the same as passing through the linesBL andBR in the same fashion. In other words the
thermodynamic critical behaviour atP is similar to that at any point onBR or BL—the
difference is only in the ‘phases’ surrounding such points (there are two for any point on
BR or BL but three forP ).

The same resultant phase diagram can be found by considering partially-directed walks
in the presence of a mixed boundary as shown in figure 5, where we consider the square
lattice for simplicity. Partially-directed walks are walks which, when viewed from left to
right, are forbidden to have any steps to the left. The walk has one step attached to the
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Figure 3. A plot of the fluctuations of the number of left-hand contactsF l
n(κl) againstκl for

five values of length(n = 32, 36, 40, 44, 48).

surface. As in the full walk problem, any contacts with the right-hand side of the surface
are associated with a fugacityκr , and contacts with the left-hand side of the surface are
associated with a fugacityκl (the only difference being that we fix one step along the
boundary to make the problem symmetric).

The generating function for all such directed walks is given by essentially the simple
product

G(total)(x, κl, κr) = xG(x, κl)G(x, κr) + x (43)

whereG(x, κ) is the generating function of (one-sided) partially-directed walks attached to
a surface, since the two legs of the total walk are completely independent of each other (we
give the fixed step simply a weightx). The reduced free energy is hence given by

f (κl, κr) = max(ln(x−1
c (κl)), ln(x−1

c (κr))) (44)

wherexc(κ) is the radius of convergence of the generating functionG(x, κ) of a partially-
directed walk attached to a surface. The phase diagram can then be simply deduced and is
the same as for the full undirected problem. So in summary, these partially-directed walks
exhibit the same phase diagram as we have argued holds in the case of undirected walks
(i.e. walks adsorbed to the left/right of the origin being dominant forκl/κr > κa, and walks
to the left and right being equally dominant forκl = κr, κr > κa).

We have attempted to map out the above transition lines of the full SAW problem on the
honeycomb lattice by considering the fluctuations per step of the left- and right-hand contacts
with the surface. As described in section 3.2 we plot the fluctuations per step for various
fixed κr againstκl and vice versa. The peak in these plots gives an indication of where a
transition might be in theκl–κr plane. The fluctuations of the number of left-hand contacts
with the surface per stepF l

n(κl, κr) for five lengths is plotted againstκl for fixed κr = 6 in
figure 3. For length 48, we find that this quantity has a maximum atκl = 6.019, κr = 6,
in good agreement with the transition lineκl = κr for κr > κa. We give a final plot of the
positions of the peaks in the fluctuationsF l

n andF r
n per step in figure 4. The positions of

the peaks near the symmetry line are fairly constant with changingn and also grow almost
linearly in n indicating aδ-function peak (and so a first order transition). The peaks lying
along theκl = constant andκr = constant sections of the curves are changing position more
rapidly with n and are relatively smaller than those associated with the first-order transition;
they are also growing more slowly. This is, of course, consistent with the idea that they are
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Figure 4. A plot of the positions of the maxima of the fluctuationsF l
n (full curve) andF r

n

(broken curve) forn = 48 in the full (κl , κr ) plane.

This step is fixed on the surface

Figure 5. A partially-directed self-avoiding walk on the square lattice with one step attached to
a one-dimensional boundary. A fugacityκl is associated with contacts on the left-hand side of
the surface (open circles), while a fugacityκr is associated with contacts on the right-hand side
of the surface (closed circles).

associated with a second-order phase transition withαs = 0 (φs = 1
2). Note that the value

αs = 0 implies that the peaks of the fluctuations here should not grow with a power law but
may either grow logarithmically or form a jump discontinuity in the thermodynamic limit.
Further note that the possibility of logarithms may explain the difficulty in numerically
confirming the valueφs = 1

2.

6. Summary

We have considered SAW on the honeycomb lattice in the presence of a mixed boundary;
half fixed at the ‘ordinary’ point and half fixed at the ‘special’. For this model we have given
numerical support to recent exact results for the critical temperature and configurational
exponent, along with a numerical indication that the crossover exponentφ(m)

s is indeed1
2.

We have also made similar comparisons for the exponents for SAW with unmixed ‘ordinary’
and ‘special’ boundaries.

We find that our results are in good agreement with Batchelor and Yung’s [8] claims
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that the critical point of the correspondingO(0) model,xc, is identical for all three cases,

and so that the critical point is indeed 1/
√

2 + √
2 with exponentγ (m)

1 = 85/64 for the
‘mixed’ case. Moreover, we find that the adsorption temperature is given byκa = 1 + √

2
as they predicted.

We have also elucidated the phase diagram in theκl–κr plane and found a first-order
transition along the lineκl = κr for κr > κa.
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